Search results for "Delivery System"

showing 10 items of 367 documents

Lipid Nanoparticles as Potential Gene Therapeutic Delivery Systems for Oral Administration.

2017

Background Gene therapy has experimented an increasing attention in the last decades, due to its enormous potential applications in the medical field. It can be defined as the use of genes or genetic material (DNA, RNA, oligonucleotides) to treat or prevent a disease state, generally a geneticbased one. Application Other applications, like treating viral, bacterial or parasite infections or development of vaccines are gaining also interest. Efficient gene therapy is mainly dependent on the ability of the highly labile genetic material to reach the therapeutic target. For this purpose, different delivery systems have been designed and extensively investigated. Nanoparticles offer a broad ran…

0106 biological sciences0301 basic medicineGenetic enhancementAdministration OralComputational biologyBiologyGene deliveryPharmacology01 natural sciences03 medical and health sciencesDrug Delivery SystemsOral administration010608 biotechnologyNucleic AcidsDrug DiscoverySolid lipid nanoparticleGeneticsOral routeAnimalsHumansParasite InfectionsMolecular BiologyGeneGenetics (clinical)Drug CarriersGene Transfer TechniquesGenetic TherapyBiocompatible materialLipids030104 developmental biologyMolecular MedicineNanoparticlesCurrent gene therapy
researchProduct

Engineering approaches in siRNA delivery.

2017

siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management ca…

0301 basic medicine3003siRNAs Delivery vectors in vitro models Mathematical modeling Physical modelingDelivery vectors; In vitro models; Mathematical modeling; Physical modeling; SiRNAs; 3003Pharmaceutical ScienceNanotechnology02 engineering and technologyComputational biologyBiology03 medical and health sciencesDrug Delivery SystemsHumanssiRNAs; Delivery vectors; in vitro models; Mathematical modeling; Physical modelingRNA Small Interferingin vitro modelsPhysical modelingSettore ING-IND/34 - Bioingegneria IndustrialeHydrogelsDelivery vectorsModels Theoretical021001 nanoscience & nanotechnologyDelivery vectorsiRNAsClinical PracticeHydrogel030104 developmental biologyin vitro modelsiRNAMathematical modeling0210 nano-technologyBlood streamDrug Delivery SystemClearanceHumanInternational journal of pharmaceutics
researchProduct

Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma

2020

Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of …

0301 basic medicineAntineoplastic AgentsReviewexosomesExtracellular vesiclesCatalysisInorganic Chemistrylcsh:Chemistry03 medical and health sciencesdrug delivery systems0302 clinical medicinemedicineHumansexosomedrug delivery systemmalignant pleural mesotheliomaMesotheliomaPhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5SpectroscopyDrug Carriersbusiness.industryPleural mesotheliomaMesothelioma MalignantOrganic ChemistryGeneral Medicinemedicine.diseaseMicrovesiclesComputer Science Applications030104 developmental biologylcsh:Biology (General)lcsh:QD1-999030220 oncology & carcinogenesisDrug deliveryCancer researchDelivery systemextracellular vesiclebusinessextracellular vesicles
researchProduct

Ticket to Ride: Targeting Proteins to Exosomes for Brain Delivery.

2017

Exosomes represent an attractive vehicle for the delivery of biomolecules. However, mechanisms for loading functional molecules into exosomes are relatively unexplored. Here we report the use of the evolutionarily conserved late-domain (L-domain) pathway as a mechanism for loading exogenous proteins into exosomes. We demonstrate that labeling of a target protein, Cre recombinase, with a WW tag leads to recognition by the L-domain-containing protein Ndfip1, resulting in ubiquitination and loading into exosomes. Our results show that Ndfip1 expression acts as a molecular switch for exosomal packaging of WW-Cre that can be suppressed using the exosome inhibitor GW4869. When taken up by floxed …

0301 basic medicineBiocompatibilityRecombinant Fusion ProteinsGene ExpressionComputational biologyBiologyExosomesPermeabilityCell LineExtracellular VesiclesMice03 medical and health sciencesDrug Delivery SystemsDrug DiscoveryGeneticsAnimalsMolecular BiologyPharmacologyIntegrasesbusiness.industryImmunogenicityMembrane ProteinsRNABrainProteinsMicrovesiclesBiotechnologyProtein Transport030104 developmental biologyTargeted drug deliveryBlood-Brain BarrierCommentaryMolecular MedicineOriginal ArticleNasal AbsorptionCarrier ProteinsGenetic EngineeringbusinessMolecular therapy : the journal of the American Society of Gene Therapy
researchProduct

Targeted cancer therapy through antibody fragments-decorated nanomedicines.

2017

Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hin…

0301 basic medicineCancer therapyPharmaceutical ScienceAntibody fragments03 medical and health sciences0302 clinical medicineDrug Delivery SystemsNeoplasmsAntibodies BispecificmedicineMoietyAnimalsHumansImmunoglobulin FragmentsLiposomebiologyChemistryCancermedicine.diseaseMolecular biology030104 developmental biologyNanomedicine030220 oncology & carcinogenesisbiology.proteinCancer researchNanomedicineNanoparticlesAntibodyConjugateJournal of controlled release : official journal of the Controlled Release Society
researchProduct

Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers

2017

Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of …

0301 basic medicineCellular differentiationPharmaceutical ScienceAntineoplastic AgentsBiologyMetastasis03 medical and health sciencesDrug Delivery Systems0302 clinical medicineTherapeutic indexCancer stem cellBiomarkers TumormedicineAnimalsHumansCluster of differentiationCancerCell Differentiationmedicine.disease030104 developmental biology030220 oncology & carcinogenesisCancer cellImmunologyDrug deliveryNeoplastic Stem CellsCancer researchNanoparticlesJournal of Controlled Release
researchProduct

Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing

2018

AbstractAptamers have in recent years emerged as a viable alternative to antibodies. High-throughput sequencing (HTS) has revolutionized aptamer research by increasing the number of reads from a few (using Sanger sequencing) to millions (using an HTS approach). Despite the availability and advantages of HTS compared to Sanger sequencing, there are only 50 aptamer HTS sequencing samples available on public databases. HTS data in aptamer research are primarily used to compare sequence enrichment between subsequent selection cycles. This approach does not take full advantage of HTS because the enrichment of sequences during selection can be due to inefficient negative selection when using live…

0301 basic medicineComputer scienceAptamerlcsh:MedicineGenomicsComputational biologyCell selexLigandsArticleDNA sequencingCell Line03 medical and health sciencessymbols.namesakeNegative selectionDrug Delivery Systems0302 clinical medicineCell Line TumorHumansGenomic librarylcsh:ScienceCarcinoma Renal CellSelection (genetic algorithm)Gene LibrarySanger sequencingMultidisciplinaryMolecular medicinelcsh:RSELEX Aptamer TechniqueHigh-throughput screeningComputational BiologyHigh-Throughput Nucleotide SequencingNucleotide MetabolismGenomicsAptamers NucleotideFlow CytometryMolecular medicineKidney Neoplasms030104 developmental biologyDrug DesignDrug deliverysymbolsNucleic Acid Conformationlcsh:QFunctional genomics030217 neurology & neurosurgerySystematic evolution of ligands by exponential enrichment
researchProduct

Targeted delivery of Cyclosporine A by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model

2017

The therapy of inflammatory bowel diseases is still rather inefficient, and about 80% of patients require surgery at some stage. Improving the treatments by more efficient medication is, therefore, an urgent medical need. The objective of this project was to demonstrate targeted delivery of Cyclosporine-A (CYA) to the inflamed areas of the intestinal mucosa after oral administration, enabling improved alleviation of the symptoms and, at the same time, reduced systemic drug absorption and associated adverse effects. As had already been demonstrated in previous studies, nano- to micrometer-sized drug particles will accumulate at inflamed mucosal areas, providing a platform for such purposes. …

0301 basic medicineDrugColonPolymersmedia_common.quotation_subjectAdministration OralBiological AvailabilityPharmaceutical Science02 engineering and technologyPharmacologyInflammatory bowel diseaseMice03 medical and health sciencesDrug Delivery SystemsPolylactic Acid-Polyglycolic Acid CopolymerIntestinal mucosaOral administrationAnimalsMedicineLactic AcidIntestinal MucosaParticle SizeAdverse effectmedia_commonDrug CarriersMice Inbred BALB CCrohn's diseasebusiness.industryGeneral MedicineInflammatory Bowel Diseases021001 nanoscience & nanotechnologymedicine.diseaseBioavailabilityDisease Models Animal030104 developmental biologyCyclosporineNanoparticlesNanocarriers0210 nano-technologybusinessPolyglycolic AcidBiotechnologyEuropean Journal of Pharmaceutics and Biopharmaceutics
researchProduct

Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective.

2020

International audience; Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clin…

0301 basic medicineDual targeting[SDV]Life Sciences [q-bio]Cancer therapyKinasesAntineoplastic AgentsBioinformaticsBiochemistryAnticancer drugsSynergistic effectsHistone Deacetylases03 medical and health sciences0302 clinical medicineDrug Delivery SystemsNeoplasmsReceptorsmedicineAnimalsHumansEpigeneticsPharmacologybiologybusiness.industryCancerDUAL (cognitive architecture)medicine.diseaseAnticancer drug3. Good healthEnzymesClinical trial[SDV] Life Sciences [q-bio]Histone Deacetylase Inhibitors030104 developmental biologyHistone030220 oncology & carcinogenesisbiology.proteinHistone deacetylases (HDACs)EpigeneticsDual inhibitorbusinessBiochemical pharmacology
researchProduct

Exosomes in cancer theranostic: Diamonds in the rough

2017

IF 3.306; International audience; During the last 10 years, exosomes, which are small vesicles of 50-200 nm diameter of endosomal origin, have aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. Most cells can potentially release these nanovesicles that share with the parent cell a similar lipid bilayer with transmembrane proteins and a panel of enclosed soluble proteins such as heat shock proteins and genetic material, thus acting as potential nanoshuttles of biomarkers. Exosomes surface proteins allow their targeting and capture by recipient cells, while the exosomes' conte…

0301 basic medicineEndosomeReviewexosomes[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyModels BiologicalTheranostic NanomedicineMetastasis03 medical and health sciencesCellular and Molecular NeuroscienceDrug Delivery SystemsNeoplasmsHeat shock proteincancer diagnosisBiomarkers TumormedicineAnimalsHumansTumor microenvironment[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyCancerCell Biologymedicine.diseasePrimary tumorMicrovesicles3. Good healthCell biology030104 developmental biologyTumor progressionheat shock proteinscancer therapy
researchProduct